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Anomalous transport in unbound and ratchet potentials
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A non-Markovian Langevin equation with a broadband noise is proposed to describe anomalous transport of
a particle passing over a potential saddle or moving in a ratchet potential. In the presence of thermal broadband
noise, the asymptotic mean square displacement of a free particle is proportional to the square of time; this is
called ballistic diffusion. The passing probability of a particle driven by this broadband noise over the saddle
of an inverted harmonic potential is obtained analytically. It is shown that the passing probability increases
with the kinetic energy, which is slower than that of normal case. The mechanisms of ballistic diffusion and
mobility are also applied to the rocking~a square-wave driving force acting on the potential! and flashing~the
potential fluctuating between on and off! ratchets. Phenomena such as acceleration and double-peak mean
velocity are observed.
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I. INTRODUCTION

Recently, there has been a great deal of renewed inte
in the problems of how motion of a particle is affected by t
dissipative influence of a disordered heat bath. The diso
of the background medium may induce a memory effect
velocity into the diffusion process@1–8#. The particle expe-
riences anomalous diffusion in the force-free case, its me
squared displacement in long times reads^q2(t)&}td, 0,d
,1 for subdiffusion;d51 for normal diffusion; 1,d,2 for
superdiffusion; andd52 is called ballistic diffusion@6#. Su-
perdiffusion has been found in a number of systems@9# rang-
ing from early discoveries in intermittent chaotic system
fluid particles in fully developed turbulence, and millenn
climate changes. So far, there remain open questions, su
the novel features of anomalous diffusion in unbound pot
tials, suppression of barrier diffusion, and diffusion helpi
drift, etc.

In classical mechanics, a particle can climb up to the
of a potential if its initial kinetic energy is equal to the e
ergy difference between the potential top and its initial po
tion. Thus the probability of the particle passing over t
saddle is a step function of the initial kinetic energy. Ho
ever, for dissipative systems, if the probability of the parti
passing over the potential saddle is larger than1

2 , the initial
kinetic energy of the particle must be much larger than
energy difference between the potential top and the in
position. This is because a part of the energy dissipates
internal degrees of freedom@10–12#. For instance, for the
fusion process of a massive heavy-ion system, as a typ
directional diffusion, extra-push energy is necessary in ad
tion to the Coulomb barrier. Further, in comparison with t
experimental data, the fusion probability curves with incre
ing center-of-mass energy are steep in the calculation
both the WKB and the preliminary diffusive model. Norm
diffusion cannot be applied to analyze these phenom
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well; the anomalous diffusive mechanism needs to be add
The anomalous diffusion and Le´vy flights in periodic po-

tentials have attracted little attention in the past@13#. For a
particle moving in an asymmetrical periodic potential, t
dynamical effect of anomalous diffusion and mobility shou
be very interesting. An excellent probe for directional pe
odic motion may be the Brownian ratchet related to mole
lar motors@14#. Motor proteins move cell organelles alon
the cytoskeleton; their motions are random, but directed
average. Adenosine triphosphate~ATP! coupling to a motor
protein induces a series of conformational changes. Th
are modeled by transitions between different states; alte
tively one can consider a protein moving in a fluctuati
potential@15#. The presence of ATP might lead to a nonh
mogeneous background, or a disordered media, thus ano
lous diffusion exists when the potential is absent. If the p
tential is recovered, the right and left probabilities across
positions of two near barriers are different, and this gives r
to a drift @16,17#. It is obvious that diffusion influences di
rectional motion.

The purpose of this paper is to study how ballistic diff
sion, as a strong superdiffusion, influences directional tra
port, and a comparison with normal diffusion is also p
formed. It is believed that the present work can help one
learn characteristic behaviors of both barrier passage p
lem and nonequilibrium fluctuation-induced directed motio
The paper is organized as follows. In Sec. II, a therm
broadband noise is discussed, which can induce ballistic
fusion, and a non-Markovian Langevin equation~NMLE! is
transformed into a set of Markovian Langevin equations.
Sec. III, the problem of directional diffusion passing over t
saddle of an inverse harmonic potential is added, and
exact expression for the passing probability is obtained
Sec. IV, directed motions of a particle in the rocking a
flashing ratchets in the presence of ballistic diffusion a
mobility are studied. A summary is given in Sec. V.

II. NMLE WITH A THERMAL BROADBAND NOISE

The NMLE of the motion of a particle reads

mq̈~ t !1mE
0

t

b~ t2t8!q̇~ t8!dt81U8~q!5«~ t !1E~ t !,

~1!

l
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whereq(t) is the coordinate of the particle,b(t) is the fric-
tion memory kernel,«(t) is a zero-mean, stationary therm
noise and obeys the fluctuation-dissipation theore
^«(t)«(t8)&5kBTb(ut2t8u), kB is the Boltzmann constan
andT the absolute temperature of the environment, andE(t)
is an external unbiased fluctuation.

The long-time diffusive behavior of the particle is co
trolled by the low-frequency limit of the noise density
states@6#. In order to generate a deep superdiffusion, such
ballistic diffusion, we need to remove the lower-frequen
part of the spectral densityS(v) of the noise, i.e.,S(0)
50. Here the spectral density is defined by the Fourier tra
formation of the correlation function of the noise:S(v)
5*0

`exp(2ivt)^«(t)«(0)&dt. It is clear that the spectral den
sity of the harmonic noise has a local minimum atv50
@18#, but it is not vanishing in the low-frequency limit. Thu
this noise cannot induce a superdiffusion. We know that
spectral density of the Ornstein-Uhlenbeck noise~OUN!
equals a constant at zero frequency and decays at high
quency. If the difference between two OUNs with differe
time constants, driven by the same white noise, is regar
as a noise source, its zero frequency vanishes and it exh
a peak at a finite frequency. Thus a broadband spectru
realized by this noise@19#. We propose

«~ t !5«2~ t !2«1~ t !,

«̇ j~ t !52
1

t j
« j~ t !1

1

t j
j~ t ! ~ j 51,2!,

^j~ t !&50, ^j~ t !j~ t8!&52Dd~ t2t8!, ~2!

wheret1 andt2 are correlation times of the noise, andD is
the intensity of white noisej(t).

If we assume that ^« j
2(0)&5D/t j ( j 51,2) and

^«1(0)«2(0)&52D/(t11t2), the noisee(t) is a stationary
process at any time and its correlation function reads

^«~ t !«~ t8!&5
D~t12t2!

t11t2
H 1

t2
expS 2

ut2t8u
t2

D
2

1

t1
expS 2

ut2t8u
t1

D J . ~3!

In order to allow a transition between low-passing ‘‘re
noise and high-passing ‘‘green’’ noise@20#, we chooseD
5b0kBT@t1 /(t12t2)#2, whereb0 is the friction coefficient.
We introduce a dimensionless quantity from the spectral d
sity divided by b0kBT:C(v)5S(v)/(b0kBT). For the
present broadband noise, we have

Cb
21~v!5~t1v!221S 11

t2
2

t1
2D 1~t2v!2. ~4!

Cb(v) has a peak at the frequencyvp5(t1t2)21/2. The
spectrum of this noise displays a broadband and has
high frequencies in comparison with the harmonic noi
Whent1→`, Cb(v)5(11t2

2v2)21 shows a red spectrum
whent2→0, Cb(v)5@11(t1v)22#21 shows a green spec
01612
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trum, becauseCb(v) is equal to a homogeneous spectrum
the white noise plus a low-passing spectrum of the red no

The harmonic noise is named quasimonochromatic no
the inverse of its spectrum divided by (b0kBT) is given by

Ch
21~v!5v0

24@~v22v0
2!21G2v2#. ~5!

Ch(v) has a sharp peak at the frequency (v0
22 1

2 G2)1/2. The
harmonic noise can be viewed as the result of passing w
noisej(t) through a harmonic oscillator filter:z̈1Gż1v0

2

5j(t) @18#. The spectral densities of the above three kin
of colored noises are shown in Fig. 1.

If one directly simulates the NMLE~1! with the noise
process~2!, double numerical integrations for the memo
velocity are required, thus the run time is not only long b
iterative errors also collect and develop in the final resu
Now we transform Eq.~1! into a set of Markovian Langevin
equations~MLE! by introducing two variables

yj~ t !5~21! jF2
A

t j
E

0

t

expS 2
t2s

t j
D q̇~s!ds1« j~ t !G~ j 51,2!,

~6!

whereA5b0t1
2/(t1

22t2
2). Thus a set of MLE is yielded as

mq̈~ t !1U8~q!5(
j 51

2

yj~ t !1E~ t !,

ẏ j~ t !1
1

t j
y j~ t !5

~21! j

t j
@2Aq̇~ t !1j~ t !#. ~7!

Here, the initial distributions of the two stochastic variabl
y1 andy2 are the same as that of«1 and«2, respectively.

III. BARRIER PASSAGE PROBLEM

We apply Eq.~1! to the saddle passing problem@10–
12,21#. Assuming that the initial position of the particle
close to the saddle point of a potential, then around t
point, the potential is expressed to be an inverse harmo
potential:

FIG. 1. The spectral densities divided by (b0kBT) of three kinds
of colored noises: Ornstein-Uhlenbeck noise~OUN!; harmonic
noise~HN!; and broadband noise~BBN!.
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U~q!52 1
2 mV2q2, ~8!

where the coordinate origin is taken at the potential top
this case, the exact solution of Eq.~1! can be obtained by
using the Laplace transform technique, giving

q~ t !5^q~ t !&1
1

mE
0

t

H~ t2t8!«~ t8!dt8, ~9!

where^q(t)& is the mean position of the particle given by

^q~ t !&5F11V2E
0

t

H~ t8!dt8Gq01H~ t !v0 , ~10!

whereq0 andv0 are the initial coordinate and velocity of th
particle, respectively.

The Laplace transform of the response functionH(t) is

Ĥ~z!5
1

z21zb̂@z#2V2
, ~11!

whereb̂@z# is the Laplace transform of the damping kern
b(t). The response functionH(t) is the inverse form of the
Laplace transformĤ(s). The expression ofĤ(z) is given by

Ĥ~z!5
~11zt1!~11zt2!

J
, ~12!

where

J5t1t2z41~t11t2!z31~11b8t12V2t1t2!z2

2V2~t11t2!z2V2 ~13!

with b85b0t1 /(t11t2).
Applying the residue theorem

H~ t !5
1

2p i Es2 i`

s1 i`

Ĥ~s!exp~st!ds, ~14!

we obtain the response function

H~ t !5(
j 51

4
~11zjt1!~11zjt2!

~zj2zl !~zj2zk!~zj2zn!
exp~zj t !, ~15!

where zj are the roots of the equationJ50; l ,k,n
51, . . . ,4 andlÞkÞnÞ j .

The variance of the coordinate of the particle is calcula
by

sq
2~ t !52kBTE

0

t

dt1H~ t2t1!E
0

t1
dt2H~ t2t2!b~ t12t2!.

~16!

If V250, Eq. ~13! has double roots ofz50, leading to
sq

2(t)}t2 in the long-time limit; this phenomenon is calle
ballistic diffusion.

To evaluate the probability of the particle passing over
potential saddle, one needs a Gaussian distributionP for the
01612
n

l

d

e

position of the particle at any time@10–12#, because here the
noise obeys a Gaussian distribution and the potential
parabolic one. We have

P~q,t;q0 ,v0!5
1

A2psq~ t !
expS 2

@q2^q~ t !&#2

2sq
2~ t !

D .

~17!

The ratio of the particles’ numberN1 (q.0) having passed
the potential saddle to the initial localized particles’ numb
N0, also called the passing probability, as a function of tim
is determined by

n1~ t;q0 ,v0!5
N1

N0
5E

0

`

P~q,t;q0 ,v0!dq

5
1

2
erfcS 2

^q~ t !&

A2sq~ t !
D . ~18!

Defining the critical velocityv0,c , necessary to have th
passing probability equal to12 , it is obvious that it corre-
sponds to lim

t→`
^q(t)&50. From Eq.~10! it can be easily

shown that

v0,c52q0 lim
t→`

11V2E
0

t

H~ t8!dt8

H~ t !
52q0

V2

a
, ~19!

wherea is the largest positive root of Eq.~13!. In this case,
the critical kinetic energy is

Kc5
1

2
mv0,c

2 5S V

a D 2

B, ~20!

and B5 1
2 mV2q0

2 is the difference of potential energy be
tween the saddle pointq50 and the initial positionq5q0 of
the particle.

In the long-time limit,

lim
t→`

^q~ t !&

A2sq~ t !
5

V2

a
q01v0

H 2
kBT

m

b0t1
2

~t11t2!~11at1!~11at2!J
1/2.

~21!

The stationary passing probabilitynst
15n1(t→`;q0 ,v0) is

then known as a function of the initial kinetic energy and t
temperature for a givenq0. It increases from 0 to 1 aroun
the critical valueKc when increasing the initial kinetic en
ergy. The higher the temperature is, the smoother this
crease is. For normal case (t1→` andt2→0) induced by a
white noise,a5@2b01Ab0

214V2#/2 @11#.
The use of a scaling of the form by means of the ene

unit kBT and

q̃5qYA kBT

mV2
, t̃ 5b0t, t̃ j5b0t j , Ṽ5V/b0 ,
4-3
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ṽ05v0YAkBT

m
, B̃5B/~kBT!

leads to a dimensionless formulation in the Eqs.~18! and
~21!. In numerical calculation the tildes are omitted.

In Fig. 2, we plot the time-dependent passing probabi
for varioust1 at a fixedt250.05. If the initial velocity of
the particle is much larger than its critical value, the pass
probability could increase from 0 to 1. It is seen that t
increase of the passing probability curve becomes rapid w
increasingt1 ; this corresponds to the noise changing in
whiteness from greenness. Note that the value ofa appearing
in Eqs. ~19!–~21! is a nonmonotonous function oft1 at a
fixed t2, for instance, the noise shows the strongest gre
ness whent150.5 in the figure, so that the stationary pas
ing probability is the smallest or the largest for a large
small initial velocity, respectively. This implies that th
present thermal broadband noise inhibits directional bar
passage process of the particle with a large initial veloci

The stationary passing probabilitynst
1 as a function of the

initial kinetic energyK05 1
2 mv0

2 is plotted in Fig. 3. It is seen
that the increase of the passing probability by increasing
initial kinetic energy is rather slow for the present nois
induced diffusion, because the thermal green noise has le
a strong randomness. If the temperature increases, the
diffusion helps the particle with a smallv0 to pass over the
potential top. On the other hand, diffusion hinders directio
motion of the particle whenv0.v0,c .

IV. DIRECTED MOTION IN RATCHETS

Now we consider a Brownian motor in the rocking ratch
@22–24# or the flashing ratchet@15,17,25,26# in the presence
of ballistic diffusion. The normal thermal rocking ratchet h
been studied in Refs.@27# and @28#. The ratchet potential is
chosen to be a piecewise linear potential as

FIG. 2. Time-dependent passing probabilityn1(t) for different
t1 and v0. The parameters used areV251.0, x0520.5, kBT
51.0, andt250.05. The solid and dashed lines takev051.0 and
v050.2, respectively.
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U~q!5H U0

~12a!l
q, 0,q,~12a!l

U0

al
~l2q!, ~12a!l,q,l,

~22!

whereU0 , a, andl are barrier height, asymmetrical param
eter, and periodic length of the ratchet potential, respectiv

The use of a scaling of the form@29,30#,

q̃5q/l, t̃ 5t/t0 , ỹ j5yjU0 /l ~ j 51,2!,

U~ q̃!5U~q!/U0 ,

leads to a dimensionless formulation of the dynamics in
potentialU with U(q̃)5U(q̃11). We chooset05b0l2/U0
to obtain a dimensionless friction coefficient equal to on
Then, the rescaled mass and noise parameters are give

m5
mU0

l2b0
2

, D̃5
D

U0b0
, t̃ j5

t jU0

b0l2
, ~23!

where j 51,2. The dimensionless dynamics reads

q̇5v,

m v̇52U8~q!1(
j 51

2

yj~ t !1E~ t !, ~24!

ẏ j52
y

t j
1

~21! j

t j
@2Av~ t !1j~ t !#,

where the tildes are omitted here and later on. We use
stochastic Runge-Kutta algorithm@31# with a small time step
Dt51023 to simulate numerically Eq.~24!.

FIG. 3. The stationary passing probabilitynst
1 as a function of

the initial kinetic energyK0 at a fixedt250.02 for differentt1 and
kBT; the other parameters are the same as Fig. 2.
4-4
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A. Acceleration in the rocking ratchet

The external drivingE(t) is chosen as a square-wav
shape of the driving force with amplitudeA @24#,

E~ t !5H A, 2ntp<t,~2n11!tp

2A, ~2n11!tp<t,2~n11!tp ,
~25!

where the time period 2tp is assumed to be larger than th
time scale of Brownian particles in a bath environment,
smaller than the diffusive time of the particle over the pote
tial barriers.

The quantity of central interest is the time-averaged
locity of the particle in the past, which can be directly eva
ated from Eqs.~22!, ~24!, and ~25! via numerical simula-
tions. In the normal case, the mean velocity versusA andT
has been discussed previously, so here we focus on the
acteristic behaviors of directed acceleration due to mob
corresponding to ballistic diffusion. In Figs. 4~a!–4~c!, we
plot the time-dependent mean velocities of the particle
different half periodstp of the cycle, amplitudes of the force
temperatures, and asymmetries of the ratchet. The impo

FIG. 4. Time-dependent mean velocity of the particle. The co
mon parameters arem51.0, t150.5, andt250.05. ~a! Different
half-cycle periodstp at fixed a50.8, kBT51.0, andA52.0; ~b!
different amplitudes of the driving force at fixeda50.8, m51.0,
kBT51, andtp520.0; ~c! different tp at fixed a50.9, kBT50.5,
andA52.
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finding is that the mean velocity averaging to a period of
driving force increases linearly with time iftp>10, namely,
there exists a directed acceleration. Here the mean acce
tion of the particle is determined numerically by the slope
the mean velocity,

a5
1

t f2t i
@^v~ t f !&2^v~ t i !&#, ~26!

wheret i and t f are the beginning and final calculating time
of the average velocity increasing linearly with time, as w
as t f2t i52ntp , n integral. It is noticed that the zero
frequency friction of the system vanishes@i.e., *0

`b(t)dt
[0] and the ratchet potential has an asymmetrical beha
in the present model. The former gives rise to acceleration
the particle along the right and left tilted forces, and the lat
leads to the net difference between the directed accelera
in the two directions.

In Fig. 5, the mean acceleration of the particle is shown
a function of the half periodtp of the cycle. For a very smal
tp , the mobility of the particle does not have a chance to
started in theE(t)52A state quickly before a transition
back to the pinnedE(t)5A state, and so the velocity de
creases, where only the directed mean velocity exists.
mean acceleration approaches zero as the frequency bec
infinite, tp→0. For large enoughA, the total potential
U(q)6Aq has no local maxima, the mean displacement
the particle is proportional to the square of time and the sl
of the tilted potential. For large amplitudes of the drivin
force, we havê q(t)&}Fe f ft

2 in the long-time limit, where
Fe f f is the effective tilted force of the two sawtooth sides.
the four slopes involved in theE(t)5A and E(t)52A
states@24#, with 1

2 ,a,1, the values ofFe f f are equal to
U0 /a2A, 2U0 /(12a)2A, 2U0 /(12a)1A, and
U0 /a1A, respectively. The smallest slope is the left shor
side, and this leads toa(A),a(2A). We thus have a ne
negative acceleration12 @a(A)1a(2A)# to the left in the
limit of low frequency, and the slope of the mean veloc

-

FIG. 5. The acceleration as a function of the half period of
cycle for different asymmetries of the rocking ratchet at fixedkBT
50.5, t150.5, andt250.05.
4-5
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varying with time can arrive at a maximum in the adiaba
approximation for the driving force. The cycle period of th
rocking force plays an important role in the appearance
the directed acceleration, and we have found through
merical calculations that the acceleration does not exis
tp,10 even for largeA.

Dependence of the acceleration on the amplitude of
rocking force for different temperatures is shown in Fig. 6
the adiabatic approximation for the driving force. If the am
plitude of the driving force is very small, mobility of th
particle in the tilted potential is small. As the amplitude
the driving force increases, so does the acceleration. At v
large amplitudes of the driving force, however, the effect
ratchet vanishes so that the average acceleration, as the
ference between the accelerations along the two directi
decreases, approaching zero as the amplitude of the dri
force becomes infinite.

B. Multipeaked flux in the flashing ratchet

Here the external fluctuation in Eq.~1! is taken to be
E(t)5@12z(t)#U8(q), where z(t) is a two-state proces
taking two values: 0 and 1. If it is a stochastic dichotomo
process with transition ratetp

21 , the change of state probabi
ity obeys the following random telegraph equation@32#:

] tP~0,tuz,0!5tp
21@2P~0,tuz,0!1P~1,tuz,0!#,

] tP~1,tuz,0!5tp
21@P~0,tuz,0!2P~1,tuz,0!#. ~27!

If it is a periodical dichotomous process, and the parti
expresses the waiting timesto f f in the potential off andton in
the potential on, we have

z~ t !5H 0, 2ntp,t,2ntp1to f f

1, 2ntp1to f f,t,2~n11!tp ,
~28!

whereto f f1ton52tp . Different waiting times of the poten
tial on and off have been considered in Ref.@26#, but here we
chooseto f f5ton5tp only.

FIG. 6. The acceleration in the adiabatic limit as a function
the amplitudeA for different temperatures at fixeda50.8, m
51.0, tp520.0, t150.5, andt250.05.
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For the flashing ratchet, the acceleration does not oc
and the mechanism of fluctuating barrier-induced directio
drift differs with that of the rocking ratchet; the former is du
to the net difference between diffusive probabilities in t
two directions. In Fig. 7, we show the steady mean veloc
of the particle in the flashing ratchet as a function of the h
periodtp of the cycle and compare it with the result of whi
noise by the use of the same parametersa50.9 andkBT
50.01. A different phenomenon is that the mean veloc
curve has two peaks in the presence of ballistic diffusi
The first peak corresponds to a maximum probability d
during a short period of the cycle and the second peak is
to the particle having enough time to descend to the bot
of a well along the two sawtooth sides, thus it can move
long net distance. It is observed that the maximum of
mean velocity driven by the proposed thermal broadba
noise is much larger than that of the white noise.

Moreover, the mean velocitŷv& in the stochastically
flashing ratchet~SFR! is larger than in the periodically flash
ing ratchet~PFR! for fast cycles; however,̂v&SFR,^v&PFR
for slow cycles. This can be understood from the viewpo
of the sudden changing of the probability distribution of t
particle. If the waiting time in the potential off is short, th
particle does not have sufficient time to cross the nea
barrier; however, for the SFR, the probability of the potent
off being switched back the potential on is equal to1

2 ,
namely, the particle still has the chance to diffuse. On av
age, in this case,̂v&SFR.^v&PFR . In the opposite situation
of sufficiently largetp , the periodically flashing ratchet is
advantageous to the net diffusion of the particle, so that
mean velocity in the PFR is larger than in the SFR for lo
tp .

V. CONCLUSIONS

In this work, we study transport of a particle moving
two kinds of unbound potentials such as an inverse harmo
potential and a ratchet potential with a piecewise line
shape. In the presence of a thermal broadband noise,

f FIG. 7. The comparison of the mean velocity in periodically a
stochastically flashing ratchets. The parameters used area50.9,
m51.0, kBT50.01, t150.5, andt250.05.
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behavior of the particle passing the saddle of an inverse
monic potential is studied analytically. The stronger the d
fusion is, the more random the motion is, thus the increas
the passing probability with the initial kinetic energy in th
present non-Markovian case is slower than that in the nor
case; namely, at low kinetic energies, strong diffusion he
the particles to overpass the saddle point, however, if
particle has a large initial kinetic energy, its directional m
tion is inhibited by strong diffusion.

The case is opposite in the ratchet systems where ball
diffusion can advance directional motion. In the rocki
ratchet, due to the fact that the mean-squared displaceme
the particle is proportional to the square of time when b
the amplitude and the cycle time period of the driving for
are large enough, the particle exhibits a directed accelera
d,

sh

n,

r,
.

.

h

01612
r-
-
of

al
s
e

-

tic

t of
h

n.

The acceleration arrives at a maximum in the adiabatic
proximation for the driving force, and there is always
optimal temperature and amplitude of the driving force.
the flashing ratchet, the mean velocity is such that as
difference between the right and left diffusive probabilitie
the optimal mean velocity results from a cooperation b
tween free diffusion of the particle in the potential off an
mobility along the two sawtooth sides in the potential o
The challenge for generalizing this study to an overcom
of a general potential shall be considered in the future.
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