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Anomalous transport in unbound and ratchet potentials
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A non-Markovian Langevin equation with a broadband noise is proposed to describe anomalous transport of
a particle passing over a potential saddle or moving in a ratchet potential. In the presence of thermal broadband
noise, the asymptotic mean square displacement of a free particle is proportional to the square of time; this is
called ballistic diffusion. The passing probability of a particle driven by this broadband noise over the saddle
of an inverted harmonic potential is obtained analytically. It is shown that the passing probability increases
with the kinetic energy, which is slower than that of normal case. The mechanisms of ballistic diffusion and
mobility are also applied to the rockiri@ square-wave driving force acting on the potenald flashingthe
potential fluctuating between on and Joffatchets. Phenomena such as acceleration and double-peak mean
velocity are observed.
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I. INTRODUCTION well; the anomalous diffusive mechanism needs to be added.

. The anomalous diffusion and i flights in periodic po-
Recently, there has been a great deal of renewed intereglia|s have attracted little attention in the pEEd]. For a

in the problems of how motion of a particle is affected by theparticle moving in an asymmetrical periodic potential, the
dissipative influence of a disordered heat bath. The disordefynamical effect of anomalous diffusion and mobility should
of the background medium may induce a memory effect obe very interesting. An excellent probe for directional peri-
velocity into the diffusion procedd—8]. The particle expe- odic motion may be the Brownian ratchet related to molecu-
riences anomalous diffusion in the force-free case, its meariar motors[14]. Motor proteins move cell organelles along
squared displacement in long times re&d$(t))=t?, 0<s  the cytoskeleton; their motions are random, but directed on
<1 for subdiffusion;5= 1 for normal diffusion; & 6<2 for ~ average. Adenosine triphospha#rP) coupling to a motor
superdiffusion; and=2 is called ballistic diffusiorf6]. Su-  Protéin induces a series of conformational changes. These
perdiffusion has been found in a number of systégisang- are modeled by transitions between different states; alterna-

ing f v di ies in intermittent chaot " tively one can consider a protein moving in a fluctuation
Ing from early dISCoveries In intermittént chaolic sys ems'po'[ential[15]. The presence of ATP might lead to a nonho-

flgid particles in fully developed tur_bulence, and.millennial mogeneous background, or a disordered media, thus anoma
climate changes. So far, there remain open questions, such ggs diffusion exists when the potential is absent. If the po-
the novel features of anomalous diffusion in unbound potentential is recovered, the right and left probabilities across the
tials, suppression of barrier diffusion, and diffusion helpingpositions of two near barriers are different, and this gives rise
drift, etc. to a drift [16,17). It is obvious that diffusion influences di-
In classical mechanics, a particle can climb up to the toprectional motion.

of a potential if its initial kinetic energy is equal to the en-  The purpose of this paper is to study how ballistic diffu-
ergy difference between the potential top and its initial posi-sion, as a strong superdiffusion, influences directional trans-
tion. Thus the probability of the particle passing over theport, and a comparison with normal diffusion is also per-
saddle is a step function of the initial kinetic energy. How-formed. It is believed that the present work can help one to
ever, for dissipative systems, if the probability of the particlelearn characteristic behaviors of both barrier passage prob-
passing over the potential saddle is larger thanhe initial  !em and nonequilibrium fluctuation-induced directed motion.
kinetic energy of the particle must be much larger than thel "€ paper is organized as follows. In Sec. I, a thermal
energy difference between the potential top and the mitia@ro.adband noise is discussed, which can induce ballistic dif-

position. This is because a part of the energy dissipates int¢/SIon; and a non-Markovian Langevin equatiiMLE) is
transformed into a set of Markovian Langevin equations. In

internal degrees of freedol0-13. For instance, for the gec 111, the problem of directional diffusion passing over the
fusion process of a massive heavy-ion system, as a typ'C.saddIe of an inverse harmonic potential is added, and the

directional diffusion, extra-push energy is necessary in addiz : : T .
tion to the Coulomb barrier. Further, in comparison with theeXaCt expression for the passing probability is obtained. In

: . i L Sec. |V, directed motions of a particle in the rocking and
experimental data, the fusion probability curves with incréasy,shing ratchets in the presence of ballistic diffusion and
ing center-of-mass energy are steep in the calculations q.l‘j

@ B obility are studied. A summary is given in Sec. V.
both the WKB and the preliminary diffusive model. Normal
diffusion cannot be applied to analyze these phenomena ||, NMLE WITH A THERMAL BROADBAND NOISE

The NMLE of the motion of a particle reads
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whereq(t) is the coordinate of the particl@(t) is the fric- 24
) . d 22f --- {OUN, ¢,=0.5,)
tion memory kernelg(t) is a zero-mean, stationary thermal A (OUN, ©.=0.05)
noise and obeys the fluctuation-dissipation theorem: 201 4 —(BBN. 0.5, < =0.05
. 181 I ( ' t 2 )

(e(t)e(t’))=kgTB(Jt—1t'|), kg is the Boltzmann constant I (HN, ’=2, T=1)
andT the absolute temperature of the environment, B(ij 14l i
is an external unbiased fluctuation. B 1ol '

The long-time diffusive behavior of the particle is con- U 1.0 ...

trolled by the low-frequency limit of the noise density of
stated 6]. In order to generate a deep superdiffusion, such as
ballistic diffusion, we need to remove the lower-frequency
part of the spectral densit$(w) of the noise, i.e..S(0)

=0. Here the spectral density is defined by the Fourier trans-
formation of the correlation function of the nois&(w)

= [oexp(—iwT)(e(n)e(0))dr. It is clear that the spectral den-
sity of the harmonic noise has a local minimum @& 0 FIG. 1. The spectral densities divided h§kgT) of three kinds
[18], but it is not vanishing in the low-frequency limit. Thus of colored noises: Ornstein-Uhlenbeck noi@@UN); harmonic

this noise cannot induce a superdiffusion. We know that theoise (HN); and broadband noid@BN).

spectral density of the Ornstein-Uhlenbeck noi2UN)

equals a constant at zero frequency and decays at high fréum, becaus€,(w) is equal to a homogeneous spectrum of
quency. If the difference between two OUNs with different the white noise plus a low-passing spectrum of the red noise.
time constants, driven by the same white noise, is regarded The harmonic noise is named quasimonochromatic noise;
as a noise source, its zero frequency vanishes and it exhibitge inverse of its spectrum divided by¢kgT) is given by

a peak at a finite frequency. Thus a broadband spectrum is

realized by this noisg19]. We propose Cp (@)= wg (0~ 0§)?+T%w?]. 5
e(t)=g,(t)—e4(1), Cn(®) has a sharp peak at the frequenayg ¢ 31'%)¥2 The

harmonic noise can be viewed as the result of passing white
: 1 1 . noise £(t) through a harmonic oscillator filteg:+ FZ+ w?
(t)y=——g;(t)+ —&(t =12 0

&i(0) 7 #j() 7 €V (=12, =&(t) [18]. The spectral densities of the above three kinds

of colored noises are shown in Fig. 1.

(€(1))=0, (&(1)&(t'))y=2D68(t—t"), 2 If one directly simulates the NMLE1) with the noise
) ) ) ] process(2), double numerical integrations for the memory
wherer; and 7, are correlation times of the noise, abds  \g|ocity are required, thus the run time is not only long but
the intensity of white noisg(t). _ iterative errors also collect and develop in the final results.

If we assume that(£{(0))=D/7; (j=1,2) and Now we transform Eq(1) into a set of Markovian Langevin
(£1(0)e5(0))=2D/(71+ 75), the noisee(t) is a stationary  equationsMLE) by introducing two variables
process at any time and its correlation function reads

: A [t t—sj.
D(7— 1 t—t’ y-(t)=(—1)'[——f exp( ——)q(S)dS+s-(t) (j=1,2,
(e(t)e(t’))= —(Tl 2 {—exp( - | |) : TiJo 7j J
7'1+ T2 T T (6)
_ iex;{ =t ] 3) whereA= By74/ (72— 73). Thus a set of MLE is yielded as
T1 T1
2
In order to allow a transition between low-passing “red” m'q(t)+U’(q)=2 yj(D)+E(t),
i=1

noise and high-passing “green” noid€0], we chooseD

=BoksT[ 71 /(71— 1) ]2, Wherep, is the friction coefficient. 1 (—1)!

We mtro_duce a dlmenspnlessiquantlty from the spectral den- Vi + =y = ——[~Aq(t) + &1)]. @)

sity divided by BokgT:C(w)=S(w)/(BoksT). For the 7j Tj

present broadband noise, we have . . .
Here, the initial distributions of the two stochastic variables

Tg y; andy, are the same as that ef ande,, respectively.
Cp (@)= (110) 24| 1+ = | +(m0)° (4)
1 I1l. BARRIER PASSAGE PROBLEM
Cy(w) has a peak at the frequenay,=(7,7,) *2 The We apply Eq.(1) to the saddle passing problefa0—

spectrum of this noise displays a broadband and has rich2,21]. Assuming that the initial position of the particle is
high frequencies in comparison with the harmonic noiseclose to the saddle point of a potential, then around this
When7r;—0o0, Cp(w)=(1+ r%wz)‘l shows a red spectrum; point, the potential is expressed to be an inverse harmonic
whenr,—0, Cy(w)=[1+(m,0) 2] ! shows a green spec- potential:

016124-2



ANOMALOUS TRANSPORT IN UNBOUND AND RATCHH ...

U(g)=—3mQ?qg?, (8)
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position of the particle at any tinfd0—12, because here the
noise obeys a Gaussian distribution and the potential is a

where the coordinate origin is taken at the potential top. Iparabolic one. We have

this case, the exact solution of E@.) can be obtained by

using the Laplace transform technique, giving

1t
q(t)=(a(t))+ ELH(I—I’)S(I’)dt'. 9

where(q(t)) is the mean position of the particle given by

t
(q(t))= 1+92f0H(t')dt' qo+H(t)vg, (10)

whereqg andv are the initial coordinate and velocity of the

particle, respectively.
The Laplace transform of the response functitft) is
. 1

D= A 1)

Q.88 0g) = s ex] — [a—(a(t)®
ST 2mag(t) 205%(t) |
17
The ratio of the particles’ numbét™ (g>0) having passed
the potential saddle to the initial localized particles’ number

Ny, also called the passing probability, as a function of time
is determined by

+

n"(t;do,vo) = No ~ fo 11(q,t;do,v0)dq

(q(t)) ) 18

1
_?%_ﬁmu

Defining the critical velocityv., necessary to have the
passing probability equal tg, it is obvious that it corre-

where B[ z] is the Laplace transform of the damping kernel sponds to Iirpﬂw(q(t)):O. From Eq.(10) it can be easily

B(1). The response functioH (t) is the inverse form of the
Laplace transforni (s). The expression dfi(z) is given by

l:l(z)=(1+271):(1+272), 12
where
E=nrz*+(r+ )28+ (14 B 1 — Q%1 1y) 22
— Q31+ 1)2— Q02 (13
with B' = Bor1 /(71 + 15).
Applying the residue theorem
1 (o+ie
H(t)= ) H(s)exp(st)ds, (14
we obtain the response function
‘ 1+zi7)(1+2z7
HO=3, (Zj(_ - EZjl)_(Zk)( zj,-—Z)zn) expzt), (15

where z; are the roots of the equatio®=0; I,k,n
=1,...,4dand #k#n#j.

shown that

t
1+QZJ H(t")dt’
0

Uoc= —(olim =—0o—
¢ - H(t) a

2

(19

wherea is the largest positive root of E¢L3). In this case,
the critical kinetic energy is

1, [\
KC:_mUOYC: g B,

5 (20

and B=§m92q§ is the difference of potential energy be-
tween the saddle poirf=0 and the initial positiorg= g, of
the particle.

In the long-time limit,

QZ
(q(t)) T dot o

tﬂoo\/iaq(t)_ 2|<B_T BoTi e
m (m+7)(l+ar)(l+ar)

(21)

The stationary passing probabilih,=n* (t—«;qg,v¢) is

The variance of the coordinate of the particle is calculatednen known as a function of the initial kinetic energy and the

by

t t
ag(t)=2kBTJ dtlH(t—tl)J "dtH (t—t,) B(t,—t,).
0 0
(16)
If Q%2=0, Eq. (13) has double roots o£=0, leading to

ag(t)oct2 in the long-time limit; this phenomenon is called

ballistic diffusion.

To evaluate the probability of the particle passing over the a=q /1 / KT . T=pt, ’;J_ =Bo7;,
mq)

potential saddle, one needs a Gaussian distribdfidor the

temperature for a giveqy. It increases from 0 to 1 around
the critical valueK. when increasing the initial kinetic en-
ergy. The higher the temperature is, the smoother this in-
crease is. For normal case;(—> andr,—0) induced by a
white noise,a=[ — By+ VB2 +4Q0?]/2 [11].

The use of a scaling of the form by means of the energy
unit kgT and

ﬁ:Q/ﬁo,
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FIG. 2. Time-dependent passing probability(t) for different ) ) . )
7, and v,. The parameters used af?=1.0, xo=—0.5, kgT FIG. 3. The stationary passing probability; as a function of
=1.0, andr,=0.05. The solid and dashed lines takg=1.0 and  the initial kinetic energy, at a fixedr,=0.02 for differentr; and
vo=0.2, respectively. kgT; the other parameters are the same as Fig. 2.
Uo
- keT — 2 g, 0<g<(l—a)\
vo=v0/\/i, B=B/(ksT) (1—an
m U@=1 (22
0
—(\— 1-a)\<g<A\,
—~(-g), (1-a)<g
leads to a dimensionless formulation in the E¢s3) and
(21). In numerical calculation the tildes are omitted. whereUg, «, and\ are barrier height, asymmetrical param-
In Fig. 2, we plot the time-dependent passing probabilityeter, and periodic length of the ratchet potential, respectively.
for various r; at a fixedr,=0.05. If the initial velocity of The use of a scaling of the forf29,30,
the particle is much larger than its critical value, the passing
probability could increase from 0 to 1. It is seen that the q=q/\, t=t/tg, ;j:ijO/)\ (i=1,2),

increase of the passing probability curve becomes rapid with

increasingry; this corresponds to the noise changing into ~

whiteness from greenness. Note that the valua apearing U(a)=U(a)/Uo.

in Egs. (19—(21) is a nonmonotonous function af; at a . ] . o
fixed 7,, for instance, the noise shows the strongest greerl€2ds to & dimensionless formulation of the dynamics in a
ness whenr,=0.5 in the figure, so that the stationary pass-PotentialU with U(q)=U(q+1). We choosd,=Bo\*/U,

ing probability is the smallest or the largest for a large ort0 obtain a dimensionless friction coefficient equal to one.
small initial velocity, respectively. This implies that the Then, the rescaled mass and noise parameters are given as

present thermal broadband noise inhibits directional barrier

passage process of the particle with a large initial velocity. mU, - D ~ 71U
_ __The_stat_ionary passing prcz)t_)abilirq,g’t a; a f_unction_ of the m= W D= UoBo’ TJ:IBO)\Z, (23
initial kinetic energyK o=z muvy is plotted in Fig. 3. It is seen 0
that the increase of the passing probability by increasing the . , , ,
initial kinetic energy is rather slow for the present noise-Wherej=1,2. The dimensionless dynamics reads
induced diffusion, because the thermal green noise has led to _
a strong randomness. If the temperature increases, thermal g=v,
diffusion helps the particle with a small, to pass over the
potential top. On the other hand, diffusion hinders directional 2
motion of the particle wheno>v. uv=—U r(q)+j21 y;(H)+E(b), (24)
IV. DIRECTED MOTION IN RATCHETS . y (- 1)J
yj=——+ [—Av(t)+£(1)],

Now we consider a Brownian motor in the rocking ratchet 7j 7j

[22—-24 or the flashing ratchdtl5,17,25,26in the presence

of ballistic diffusion. The normal thermal rocking ratchet haswhere the tildes are omitted here and later on. We use the
been studied in Ref$27] and[28]. The ratchet potential is stochastic Runge-Kutta algorithf81] with a small time step

chosen to be a piecewise linear potential as At=10"3 to simulate numerically Eq24).
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FIG. 5. The acceleration as a function of the half period of the
cycle for different asymmetries of the rocking ratchet at fikgd
0 200 200 600 800 1000 =0.5, 1;,=0.5, andr,=0.05.
t
0
3 finding is that the mean velocity averaging to a period of the
3E driving force increases linearly with time =10, namely,
2F there exists a directed acceleration. Here the mean accelera-
A It tion of the particle is determined numerically by the slope of
7.k the mean velocity,
A
a3 1
Wil fima0 a:tfj[<v(tf)>_<v(ti)>]r (26)
7y 200 200 500 800 1000 I

t
wheret; andt; are the beginning and final calculating times

FIG. 4. Time-dependent mean velocity of the particle. The com-of the average velocity increasing linearly with time, as well
mon parameters arg=1.0, 7,=0.5, and7,=0.05. (3) Different a5 t;—t;=2nt,, n integral. It is noticed that the zero-
half-cycle periodst,, at fixed @=0.8, ksT=1.0, andA=2.0; () frequency friction of the system vanishéise., [%A3(t)dt
i'f_fielm :r%‘i"t:‘;%sof)f(g‘zi#ggg?tfo;ﬁifég'xidg8'?(’ ‘Tiég =0] and the ratchet potential has an asymmetrical behavior
aadA:,Z P P a=>s K ™~ in the present model. The former gives rise to acceleration of

' the particle along the right and left tilted forces, and the latter
leads to the net difference between the directed accelerations
in the two directions.

The external drivingE(t) is chosen as a square-wave In Fig. 5, the mean acceleration of the particle is shown as
shape of the driving force with amplitudie[24], a function of the half period, of the cycle. For a very small

_ t,, the mobility of the particle does not have a chance to get
E(t)= A, 2nst<(2n+ Dt (25  Started in theE(t)=~A state quickly before a transition
—A, (2n+Dty=t<2(n+D)t,, back to the pinned(t)=A state, and so the velocity de-
creases, where only the directed mean velocity exists. The
where the time periodt2 is assumed to be larger than the mean acceleration approaches zero as the frequency becomes
time scale of Brownian particles in a bath environment, butnfinite, t,—0. For large enoughA, the total potential
smaller than the diffusive time of the particle over the poten-U(q) £ Ag has no local maxima, the mean displacement of
tial barriers. the particle is proportional to the square of time and the slope

The quantity of central interest is the time-averaged veof the tilted potential. For large amplitudes of the driving
locity of the particle in the past, which can be directly evalu-force, we have(q(t))o=Fe;t? in the long-time limit, where
ated from Egs.(22), (24), and (25) via numerical simula- Fc+¢is the effective tilted force of the two sawtooth sides. Of
tions. In the normal case, the mean velocity ver8ulendT  the four slopes involved in th&(t)=A and E(t)=—-A
has been discussed previously, so here we focus on the chatates[24], with 3<a<1, the values of¢; are equal to
acteristic behaviors of directed acceleration due to mobilittdg/a—A, —Ug/(1—a)—A, —Uy/(l—a)+A, and
corresponding to ballistic diffusion. In Figs(al—4(c), we  Ug/a+A, respectively. The smallest slope is the left shorter
plot the time-dependent mean velocities of the particle forside, and this leads ta(A)<a(—A). We thus have a net
different half periods,, of the cycle, amplitudes of the force, negative acceleratiog[a(A)+a(—A)] to the left in the
temperatures, and asymmetries of the ratchet. The importafiimit of low frequency, and the slope of the mean velocity

A. Acceleration in the rocking ratchet
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FIG. 6. The acceleration in the adiabatic limit as a function of  F|G. 7. The comparison of the mean velocity in periodically and
the amplitudeA for different temperatures at fixed=0.8, u  stochastically flashing ratchets. The parameters usedrar®.9,
=1.0,t,=20.0, ;,=0.5, andr,=0.05. u=1.0,kgT=0.01, 7,=0.5, andr,=0.05.

varying with time can arrive at a maximum in the adiabatic o the flashing ratchet, the acceleration does not occur,

approximation for the driving force. The cycle period of the g the mechanism of fluctuating barrier-induced directional
rocking force plays an important role in the appearance ofyit gifers with that of the rocking ratchet; the former is due

the directed acceleration, and we have found through nug, the net difference between diffusive probabilities in the

merical calculations that the acceleration does not exist ifwo directions. In Fig. 7, we show the steady mean velocity
t,<<10 even for largeA. ’

. . of the particle in the flashing ratchet as a function of the half
Dependence of the acceleration on the amplitude of t_hf)eriodtp of the cycle and compare it with the result of white
rocking force for different temperatures is shown in Fig. 6 in

- . L o noise by the use of the same parameters0.9 andkgT
the adiabatic approximation for the driving force. If the am- _ 5 51 “A different phenomenon is that the mean velocity
plitude of the driving force is very small, mobility of the P

curve has two peaks in the presence of ballistic diffusion.

particl_e_in the tiltgd potential is small. As the amplitude of The first peak corresponds to a maximum probability drift
the driving force increases, so does the acceleration. At Veréfuring a short period of the cycle and the second peak is due
large amplitudes of the driving force, however, the effect of

. _ to the particle having enough time to descend to the bottom
ratchet vanishes so that the average acceleration, as the diff 5 el along the two sawtooth sides, thus it can move a
ference between the accelerations along the two directionﬁmg net distance. It is observed that t'he maximum of the

decreases, approaching zero as the amplitude of the drivingean velocity driven by the proposed thermal broadband
force becomes infinite. noise is much larger than that of the white noise.
Moreover, the mean velocityv) in the stochastically
B. Multipeaked flux in the flashing ratchet flashing ratchetSFR) is larger than in the periodically flash-
Here the external fluctuation in Eql) is taken to be ing ratchet(PFR for fast cycles; howevery)srr<(v)prr
E(t)=[1—2(t)]U'(q), wherez(t) is a two-state process for slow cycles. This can be understood from the viewpoint
taking two values: 0 and 1. If it is a stochastic dichotomous©f the sudden changing of the probability distribution of the
process with transition rat(gl, the change of state probabil- particle. If the waiting time in the potential off is short, the

ity obeys the following random telegraph equat|/@2]: parti_cle does not have sufficient time to cross the nearest
barrier; however, for the SFR, the probability of the potential
atP(O,t|z,O)=t;1[—P(O,tlz,0)+ P(1t]z,0)], off being switched back the potential on is equal %p

namely, the particle still has the chance to diffuse. On aver-
atP(l,tlz,O)=t,;1[P(O,t|z,0)— P(1t]2,0)]. (27) age, in this casgu)srr>(v)prr- In the opposite situation
of sufficiently larget,, the periodically flashing ratchet is
If it is a periodical dichotomous process, and the particleadvantageous to the net diffusion of the particle, so that the
expresses the waiting timeg; in the potential off and,, in mean velocity in the PFR is larger than in the SFR for long
the potential on, we have tp.

0, 2ntp<t<2ntp+toff
z(t)= (28 V. CONCLUSIONS
1, 2nt+top<t<2(n+1)t,,
In this work, we study transport of a particle moving in
wheretq¢;+t,,=2t,. Different waiting times of the poten- two kinds of unbound potentials such as an inverse harmonic
tial on and off have been considered in H&6], but here we potential and a ratchet potential with a piecewise linear

chooseét, s =tyn=t, only. shape. In the presence of a thermal broadband noise, the

016124-6



ANOMALOUS TRANSPORT IN UNBOUND AND RATCHH . .. PHYSICAL REVIEW E 69, 016124 (2004
behavior of the particle passing the saddle of an inverse hatfrhe acceleration arrives at a maximum in the adiabatic ap-
monic potential is studied analytically. The stronger the dif-proximation for the driving force, and there is always an
fusion is, the more random the motion is, thus the increase adptimal temperature and amplitude of the driving force. In
the passing probability with the initial kinetic energy in the the flashing ratchet, the mean velocity is such that as the
present non-Markovian case is slower than that in the normalifference between the right and left diffusive probabilities,
case; namely, at low kinetic energies, strong diffusion helpshe optimal mean velocity results from a cooperation be-
the particles to overpass the saddle point, however, if théween free diffusion of the particle in the potential off and
particle has a large initial kinetic energy, its directional mo-mobility along the two sawtooth sides in the potential on.
tion is inhibited by strong diffusion. The challenge for generalizing this study to an overcoming
The case is opposite in the ratchet systems where ballistiof a general potential shall be considered in the future.
diffusion can advance directional motion. In the rocking
ratchet, due to the fact that the mean-squared displacement of
the particle is proportional to the square of time when both
the amplitude and the cycle time period of the driving force  This work was supported by the National Natural Science
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